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 Sequential Design for Microarray Experiments
 Gilles Durrieu and Laurent Briollais

 A critical aspect in the design of microarray studies is the determination of the sample size necessary to declare genes differentially
 expressed across different experimental conditions. In this article, we propose a sequential approach where the decision to stop the
 experiment depends on the accumulated microarray data. The study could stop whenever sufficient data have been accumulated to identify
 gene expression changes across several experimental conditions. The gene expression response is modeled by a robust linear regression
 model. We then construct a sequential confidence interval for the intercept of this model, which represents the median gene expression at a

 given experimental condition. We derive the stopping rule of the experiment for both continuous and discrete sequential approaches and give

 the asymptotic properties of the stopping variable. We demonstrate the desirable properties of our sequential approach, both theoretically
 and numerically. In our application to a study of hormone responsive breast cancer cell lines, we estimated the stopping variable for the
 sample size determination to be smaller than the actual sample size available to conduct the experiment. This means that we can obtain an
 accurate assessment of differential gene expression without compromising the cost and size of the study. Altogether, we anticipate that this

 approach could have an important contribution to microarray studies by improving the usual experimental designs and methods of analysis.

 KEY WORDS: Dose-response; Gene expression; Robust regression; Sample size.

 1. INTRODUCTION

 Microarray chips and other high-throughput technologies
 have changed radically the nature of genomics assays by
 allowing the simultaneous screening of thousands of genes in a
 single experiment. Statistical inference about change patterns
 in microarrays has led to the competing applications of
 numerous statistical approaches and computing algorithms for
 several problems: class comparison, class discovery, and class
 prediction Simon (2003). A particular aspect of these experi-
 ments, which has received less attention, is the planning of the
 experimental design that should enable experimenters to have
 efficient and valid inference about expression profiling. Par-
 ticular designs of interest for class comparison problems
 include two- and multiclass experiments, where the classes are
 the experimental conditions; for example, different types of
 tumor tissue, stages of tumor progression, doses of an expo-
 sure, or time-points. There have been a number of articles
 discussing the general issues related to experimental designs
 (for reviews, see Churchill 2002; McShane, Shin,, and
 Michalowska 2003), the paradigm being to use fixed-sample
 size plans. The theory of experimental design can be used to
 optimize the information gained from an experiment (Kerr and
 Churchill 2001a,b; Glonek and Solomon 2004) and to deter-
 mine the number of arrays required to conduct the experiment.
 However, this leads generally to very crude sample size esti-
 mates, whose determination depends on quantities such as the
 variability of gene expression across the different experimental
 conditions and the false discovery rate (FDR) (Benjamini and
 Hochberg 1995) that are generally unknown before the study
 (Pan, Lin, and Le 2002; Zien, Fluck, Zimmer, and Lengauer
 2003; Gadbury et al. 2004; Pawitan, Michiels, Koscielny,
 Gusnanto, and Ploner 2005; Muller, Parmigiani, Robert, and
 Rousseau 2004; Dobbin and Simon 2005). Therefore, there is
 no guarantee that the study will have sufficient efficiency to
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 detect the expression profiles of interest. To address this
 problem, Warnes and Liu (2005) developed a procedure to
 estimate sample size that uses an estimate of the standard
 deviation for each gene based on control samples from existing
 studies. Tibshirani (2006) proposed a method for assessing
 sample sizes based on a permutation-based analysis of pilot
 data, which avoids strong parametric assumptions and allows
 prior information about the required quantities. The authors
 emphasized a two-stage approach but it remains unclear how
 the data from the pilot and main studies should be analyzed.

 A more formal multistage strategy that does not rely on the
 distribution of primary measurements from other studies, or from

 a pilot study, is the sequential approach. In clinical trials,
 sequential designs are well known to offer numerous ethical and
 economic advantages due to the possibility of early stopping
 either for futility or obvious advantage of a treatment (Jennison

 and Turnbull 2000). Indeed, the sample size, which is unknown at

 the start of the study period, is determined subsequently in part by

 the nature of the sequentially accumulating data. Such approaches
 could be particularly beneficial in the design of efficient micro-
 array experiments for several reasons. First, many biologists use

 sequential designs implicitly by collecting an initial sample (a
 pilot study for example) and by performing a first analysis. In
 some experiments, additional samples will be collected and fur-
 ther analyses will be carried out, but without proper adjustment
 for the multiple analyses. Sequential approaches are also known
 to require less observation than fixed-sample size approaches to
 reach the same conclusion. This will be very advantageous for
 microarray studies both because of their cost (DNA chips retail
 for about $1,000 each) and the difficulties to obtaining sample
 material. Finally, determining an appropriate sample size to
 conduct a microarray experiment is often impossible and
 sequential approaches give a more rational solution by accumu-
 lating information to provide an estimate of the sample size, an
 estimate that can be given with its precision (because it is a ran-
 dom variable). Despite these obvious advantages, sequential
 designs have received very little attention in the field of micro-
 array studies and more generally in the field of genomics.
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 To the best of our knowledge, only two articles discussed their

 application in the context of microarray studies. The first one
 introduced a sequential procedure for classification problems
 (Fu, Dougherty, Mallick, and Carroll 2005). It provides stopping
 criteria that ensure with a certain level of confidence that at

 stopping the misclassification probability of any future subject
 into a particular experimental group will be smaller than a
 predetermined threshold. Although interesting, this approach
 does not apply directly to class comparison problems. The sec-
 ond article deals with class comparison problems and proposed
 the construction of nonparametric prediction intervals to identify

 differentially expressed genes (Gibbons et al. 2005). A fixed
 number of control samples (normal tissues) is first obtained,
 followed by sequential collection of the experimental samples
 (tumor tissues), one by one or by groups. The control samples
 are then used to construct a predictive interval for the mean gene

 expression or other summary statistic of the experimental sam-
 ples. The procedure stops when the probability that this sum-
 mary statistic calculated for one specific gene (or a group of
 genes) in the experimental samples is outside the prediction
 limits with high probability. This approach is not truly sequential
 because the probability of being outside the predictive bounds is
 determined for different sizes of the experimental samples but
 does not depend on the accumulated information on gene
 expression data. To our knowledge, neither of these approaches
 has been applied in real situations.

 In this article, we propose a formal theory for sequential
 microarray design in the context of class comparison problems.
 Section 2 describes the main novelties: that the decision to stop
 the experiment really depends on the data that are accumulat-
 ing, and that the statistical properties of the stopping rule
 proposed are thoroughly studied both theoretically and by
 simulation. Our approach builds on the general linear regres-
 sion framework, which is a very common strategy for micro-
 array studies. Besides the sequential aspect, we use nonparametric
 regression to provide robustness against outliers and dis-
 tribution-free inference, which is particularly advantageous in
 small sample size microarray problems. The principle of our
 approach is the construction of confidence interval (CI) for the
 model parameter, corresponding to a particular level of gene
 expression. The case of correlated observations is also dis-
 cussed and treated by adjustment of the data. The definition of
 the stopping rule of the sequential procedure for a given pre-
 cision is presented in Section 3. We develop both the case of
 continuous and discrete monitoring and the asymptotic prop-
 erties of the stopping variable. In Section 4, we analyze gene
 expression profiles at various doses of estrogen exposure in
 breast cancer cell lines. Additional finite properties of our
 approach, in particular the use of continuous versus discrete
 sampling, and the potential bias due to batch effects are
 studied in Section 5 by simulation. Finally, Section 6 con-
 cludes with a general discussion of our approach and its fea-
 sibility and applicability in practice.

 2. METHODS

 2.1 The Linear Model Framework

 Linear models have become a classical statistical framework for

 the analysis of two-channels cDNA arrays, especially with the

 development of the statistical package LIMMA in R (Smyth 2004).

 For example, Kerr et al. (2001a, b) used linear models and the
 analysis of variance (ANOVA) to estimate expression differences
 and assess the variability of their estimates. They assumed a fixed

 effects model for the log gene intensity, which accounts for the

 variability due to the array, dye effect, treatment (or experimental

 condition), and gene effect. Differentially expressed genes are
 those that exhibit significant treatment by gene interactions,
 whereas normalization is effected by including a dye term in the

 model. The random error of the model represents variations due to

 unknown sources and is typically assumed to be normally dis-
 tributed. Other authors have proposed linear models on a gene-by-

 gene basis, with a separate error for each gene, but still including
 normalization as part of their linear model (Jin et al. 2001; Wolf-
 inger et al. 2001 ). Their models also include a random effect for the

 arrays. These modeling approaches have raised several questions,
 in part because the inference about gene effects is performed
 jointly with the normalization process and the estimation of mul-
 tiple other effects (Yang and Speed 2002). In contrast, other linear

 models have been proposed for the log-ratios of intensity from
 experiments in which normalization has been carried out sepa-
 rately for each slide, typically using a nonlinear adjustment, which

 could not be captured in a linear model (Yang and Speed 2002).
 The only terms that are included in these models relate to mRNA

 samples and their treatment. The general form of the model is

 Υη=Χηβ+εη, (1)

 where for all η > 1, Y = Yn = (Y,, . . ., Y„)' is the log2 ratio of
 gene expression from all slides, X = Xn = ΧηΧρ is a known η Χ
 ρ design matrix of experimental conditions, β = (β χ, . . ., βρ)'
 is the vector of unknown parameters to be estimated, and ε = εη =

 (ε ι, . . ., e„)'is the error term. The principle of this model, in
 general, is to compare the means of the log gene expression
 distribution under different conditions (treatments). If ε fol-

 lows a normal Ν (0,7) distribution, then ordinary least squares
 provide the maximum likelihood estimator of β. However, it is
 clear from microarray data that the normality assumptions are
 often violated for interesting genes. Unusual probes and out-
 lying probe level measurements often occur to upset normal-
 ity. To avoid the distributional assumptions and to protect
 against outlying measurements, we propose a robust infer-
 ential method for model (1) by using quantile regression.

 An overview of robust statistics literature can be found in

 Hampel, Ronchetti, Rousseeuw, and Stahel (1986), Jurecková
 and Sen (1996), and Huber (2003). Our approach is based on
 regression quantile estimators of β (Koenker and D'Orey 1987;
 Dodge and Jurecková 1995). Instead of focusing on the changes
 in the mean gene expression, the quantile regression approach
 allows one to test whether there is a change in the Tth quantile
 of y for any given τ e (0,1). When the conditional distributions
 of y are nonGaussian, the mean might not be the best summary,
 and a change in distributions may not be detected.

 Inference for linear quantile regression models has become a
 subject of intense investigation in the past years. Any solution
 of the following minimization problem (jt'/denotes the ith row
 of the matrix X)

 β(θ) - β" (θ) = arg min £ Ρβ(Κ,· - χ' β) (2)
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 is called a ^-regression quantile with ρθ(χ) = χ(θ - l(x < 0))
 where IÇP) takes the value 1 or 0 depending on whether
 the condition V is satisfied or not. Here, we used the Û - norm
 estimator, also known as least absolute deviation (LAD) esti-
 mator, obtained by taking θ - 1/2, chosen as an alternative to
 least squares estimators in the presence of heavy-tailed
 distribution. It is known that this estimator performs better in
 the presence of a heavy-tailed distribution. Following Jureck-
 ová (1984), under regularity conditions, we have as η - > o°,

 ^φ)-βχ)^Ν(*Ά), (3)
 where q(6) = 'lf (Q(6)) is the quantile density function with
 Q(6) denoting the quantile function. The asymptotic variance

 of β (θ) is unknown because it depends on the distribution
 function / of the error term in the model, which itself is
 unknown. So, we estimate this asymptotic variance using the
 regression invariant and scale equivariant kernel-type estimator
 of q(6) in model (1) based on the regression quantiles. This
 estimator of q(ß), for 0 < θ < 1, is defined by

 where (vn)n > ' is a sequence of properly chosen bandwidths
 and k denotes the kernel function. The quality of a density
 estimate is now widely recognized to be primarily determined
 by the choice of bandwidth. The asymptotic behavior of this
 estimator has been studied by Dodge and Jurecková (1995). It
 was proven that under regular conditions, as η - > °°,

 y/KFnifiifl) - ?(0)) =0,(1) and φϊϊΤη(ζη{θ) - ^(0))- Ξ_>

 λί{θ^2(θ)Κ)),
 (4)

 where Κ = J AT2 (jc) dx with K(x) = J^ k(y) dy. Because of the
 choice of LAD estimator, θ is fixed at 0.5.

 2.2 Confidence Interval of the Model Intercept

 To construct the expected CI of given bounded length, we
 estimate q{' 12)12 by

 Using (4) with θ = 1/2 we have as η - > oo,

 fc(l/2) -^ ^.
 So (3) and Slutsky's theorem imply

 φι(βηχ{'/2)-βλ
 Wn(l/2)

 Hence, a (1 - a)% CI for βχ is given by

 /„= [#(1/2) -^ #„(1/2), #(1/2) + ^ #„(1/2)1

 (5)

 2.3 Nonindependent Observations

 In Section 2.1, we assumed that the errors are iid. When it is

 not the case, we can replace the model (1) by

 Υη=Χηβ+Η(λ,Χηβ)εη, (6)

 where sn are iid and independent of Xn and h (λ, Χη$) models
 the correlations between the error terms, which can depend on
 the known variables and the new parameter Λ (Maronna,
 Martin, and Yohai 2006). For example, in our application Λ
 represents the correlation between gene expressions within the
 same replicate. The same regression model (1) can then be
 applied to the following transformed variables

 Υί = ΥηΗ-χ(λ,ΧΗβ) and X'n = Xnh~](', Χηβ). (7)
 An example of function h is given in our application. In the
 following, we will assume we are working with the transformed
 variables if there is evidence for correlation between the

 observations (for example, observations within the same
 technical or biological replicate).

 3. SEQUENTIAL APPROACH

 The goal of our analyses is to detect a significant change in
 gene expression across various experimental conditions. From
 the asymptotic distribution of the intercept given in Equation
 (4), it is straightforward to see that genes that are differentially

 expressed will have β] significantly different from 0. There-
 fore, a sequential procedure can be designed such that
 experiment stops whenever gene expression changes resulting
 from exposure to several conditions have been measured with a
 desired precision. We describe more formally this concept
 based on the work of several authors (Jurecková 1991;
 Jurecková and Sen 1996; Husková 1994 among others) in the
 following section. Our contribution consists in the use of a
 robust estimator of linear regression parameters without
 assuming a distribution for the error term.

 3.1 Stopping Rule for Continuous Monitoring

 We construct a CI /„ for the first component of the linear
 model based on a robust estimator of )βχ that satisfies

 U <2d and PF(In3ß{)> 1 - α, (8)
 where Ln denotes the length of In. Starting with an initial sample

 size n0, the experiment stops when the number of replicates Nd is
 the smallest η > n0 such that the length L(Nd) < 2 d.

 The length Ln of the interval In in (5) satisfies

 ^L„=2z,_a/2#„(l/2) -^ ^ asn^oo. (9)
 So, for a given sample size η and for a given a, the length of the
 CI /„ is a random variable. The sequential procedure consists of
 adding one new observation at a time (i.e., one technical rep-
 licate at the high dose in our experiment) until the stopping rule
 Ln < 2d (d > 0 fixed) is satisfied.

 Comparing ln to I* = [^(1/2) - d,ß"('/2) + d] with
 fixed d > 0 using (5), our stopping rule can be expressed as

 n ^ zla/2W'n(l/2)
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 Durrieu and Briollais: Sequential Design for Microarry Experiments 653

 To avoid an erroneous determination of W^(l/2), we must
 choose an initial sample size n0 that is sufficiently large. Then,
 the stopping variable Nd satisfying the previous conditions on η
 can be defined by

 l~a/2 W2('/2)}

 Íz2 n> non> l~a/2 2 L d>0. (10)
 If we have a given sufficiently large sequence of observations,
 then Nd would be a nondecreasing function of d. The monot-
 onicity of Nd follows directly from the definition of Nd.

 3.2 Stopping Rule for Discrete Monitoring: Group
 Sequential Approach

 For discrete monitoring (group sequential approach), the
 (1 - a) CI for βχ at the £th analysis is given by

 /^=[^(1/2)-^^(1/2),^(1/2)
 [Γ(λ ^ (π)
 + r- Wmk{'/2)'.
 ymk '

 Imk=[ß'?(l/2)-dk,ß?(l/2) + dk], (12)
 where m is the size of each group (assumed equal) and Ck(a) is
 the critical value for the kth analysis.
 Then, the new stopping variable Ndk for the group sequential

 approach can be defined by

 Ndk - mk

 ^min{n^on.C^2t"(1/2)i^>O. (13)
 In group sequential methods, the critical values Ck(a) can be
 determined by using an α-spending function (Jennison and
 Turnbull, 2000, chap. 7). The principle is to partition the Type I
 error into Κ probabilities π', π2, . . ·πκ, where Κ is the number
 of analyses performed, which sum to a. Thus, TTk represents the
 probability of stopping at analysis k to reject Ho when this
 hypothesis is true, also termed the error spent at stage k. It can
 be determined using an error spending function, which sat-
 isifies/(0) = 0 and/(0 = α for t > I . The value/(i) indicates the
 cumulative Type I error that is spent when a fraction t of the
 maximum anticipated information has been obtained, denoted
 /max. When this maximum information has been reached, the
 sequential procedure will stop, either accepting or rejecting the
 null hypothesis.

 The Type I error allocated to each analysis is

 TTi =/(/l//max), ^k = /(/*//max) -/(/*-! /Anax),

 k = 2,3,...,K, (14)

 where Ik is the amount of information at analysis k. Without
 lack of generality, we took Ik = mk and 7max = mK.
 The critical values need to satisfy the constraint

 Pr{|Zi|<ci,...,|Z^_i|<Q_ijZ^|>Q|//0} = irk, (15)
 where 'Zk' is the standardized test statistic at the kih analysis. In
 our case, the Zk statistics correspond to the β™ ( 1 /2) divided by
 its standard deviation. The critical values can be determined

 numerically assuming a given a - spending function. In the
 following, we consider O'Brien and Fleming test (1979).
 Another form of this approach has been proposed by Lan and
 DeMets (Lan and DeMets 1983) with the following spending
 function

 fit) = min{2 - 2ct>(Zl-a/2/Vt),a} (16)
 where t = Ik/Imax and φ is the standard normal distribution.

 3.3 Asymptotic Properties of the Stopping Variable

 Our first result shows that our construction of Nd fulfills the

 requirements (8). We first state our main result and the proofs
 are given in the Appendix. These properties are satisfied for the
 continuous and discrete cases and our notation later refers to

 the continuous case.

 Theorem 1. Under regularity conditions in the distribution
 function, the sequence of matrices Xn and the kernel estimator,
 we have

 1. EF(Nd) -> +œaSuf ^0+.
 2. PF{Nd< + oo) = lforanyj>0.

 Nd/nd - P- Λ as d- >0+, where nd - z'_a/2o2 jd and

 "σ = σ1/2 = 1/(2/(0)).
 4. /V(//v(/3ßi) ^ 1 -afora G (0, 1) fixed as d->0+.

 The next theorem concerns the asymptotic behavior of the
 stopping variable.

 Theorem 2. Let η e (1/4, 1/3) and vn be such that vn -
 n2ri~' Under regularity conditions we have as d - ► 0+:

 Proofs of Theorems 1 and 2 require an intermediate re-
 sult covering essentially the problem of uniform continuity
 in probability (Anscombe condition, Anscombe 1952) of
 the least-absolute regression estimator and the asymptotic
 kernel variance estimator. The proof of Theorem 2 is
 given in the Appendix. To avoid the presentation of lengthy
 mathematical results, the proof of the Anscombe condition
 is given as a technical report posted online at the JASA
 website.

 Proof of Theorem L (1) It follows by construction that Nd
 increases as d decreases; this together with the fact that Ln > 0
 with probability 1 implies that

 Vra > 0, lim PF{Nd<m) < lim PF{LNd<2d) = 0,
 d- >0+ d- >0+

 ρ

 and thus Nd

 monotone convergence theorem we have

 'im EF(Nd) = EF('imNd) = oo.
 d- >0 y/- >0 J

 (2) For every n > n0 we have

This content downloaded from 132.174.251.50 on Tue, 21 Mar 2023 16:02:54 UTC
All use subject to https://about.jstor.org/terms



 654 Journal of the American Statistical Association, June 2009

 PF{Nd>n} < ΡΡ{η<ά-2ζ]_α/2Ψ2η('ΐ2)).
 From (4) we deduce that Wn( '/2)/n P > 0 as η -> oo,
 hence

 PAN d = oo} = 'imPF{Nd>n} < lim PF{n<d~2 z2_all

 xw„2(i/2)} = o.

 Therefore,

 pF{^ = oo} = 0 and PF{Nd< + °°} = 1 for every d>0.

 (3) Note that with probability 1, we have

 d V J 35 /
 Recalling that nj = Z2_a,2°'2/d2, we obtain

 <W21<^ /ü;,^"/2^!. (17)
 Moreover, using the fact that

 Wn('/2) - ^- > σ as η - ► oo, Λ^

 and uniform continuity in probability of W„(l/2), we
 obtain

 M/2) _^ , and ^-,(1/2) _J^ , ω
 σ σ

 (18)

 By (18), as d -> 0+, we have

 'nd σ1 J
 Finally, by (17) we obtain the expected result, i.e.,

 ^_JU! as d^0+.
 nd

 (4) Moreover, because β" is asymptotically normal and
 uniformly continuous in probability, we obtain,

 WNj(l/2) ~ 'WNd(l/2)) 'nd)

 (^(βΝ<{'Γ2)-βχ)'

 = ( σ ' (NAWlyfcihWQ-ßi)
 'WNd(l/2)J W [ σ

 ^(^(l/2)-^(l/2))| v
 + ° J
 ^(0,1) as d^0+.

 As d - > 0+, we have

 Um PF{'ßNä(l/2) -β, | < z,-a/2^(l/2)Af;1/2}
 = '-a. (19)

 By (19) and (10) we finally have

 lim PF{ßNi{'/2)-d< ßx s J8Wí(l/2)+d} > 1 -α .

 4. THE MICROARRAY EXPERIMENT

 Recently, Lobenhofer et al. (2004) illustrated the interest of
 model-based approaches for microarray analysis in a study that
 tried to identify genes that respond to estrogen treatment and
 evaluated more particularly the doses of estrogen capable of
 inducing a transcriptional response in breast cancer cell lines.
 In terms of our methodology, this dataset possesses several
 major points of interest. First, we believe that their fixed
 sample size design is not optimal and the differentially
 expressed genes could have been detected using fewer repli-
 cates. Second, the design can be analyzed using discrete
 monitoring, the group can be a technical replicate (m = 2) or a
 biological replicate (m = 4). Because of the small sample size
 of this experiment, we decided to use the technical replicate as
 the group. Third, the observations can be correlated within each
 technical and biological replicate. Finally, this study was
 among the rare ones to clearly establish a dose-response effect
 in a gene expression experiment and therefore, the variable
 dose has a real scientific interest and needs to be modeled

 appropriately.
 In this study, the gene expression levels of a hormone

 responsive breast cancer cell line (MCF-7) are measured after
 stimulation with various concentrations of estrogen, above
 (high-dose effect) and below (low-dose effect) normal phys-
 iologic levels and compared with the corresponding levels of
 expression in control samples (Lobenhofer et al. 2004). The
 data were downloaded from the website http://dir.niehs.nih.gov/

 microarray/datasets/home-pub.htm.
 The cell lines were treated with estrogen at four concen-

 trations (10~8 M, 10"10M, high doses) and (10"13M, 10"15M,
 low doses) or with concentration-matched ethanol solvent
 (control samples). The RNA sample from each estrogen treat-
 ment and its corresponding control were compared using cus-
 tom-made cDNA microarray s, ToxChip version 1.0, in a dye-
 swap fashion. Each chip had 1,920 clones double-printed in two
 subarrays, so each clone was duplicated on the array. The dye
 swap and the duplicated spots lead to four technical replicates
 for each biological replicate. There were two biological repli-
 cates, so eight measurements at each dose. In this analysis, we
 focused on seven genes that were validated by real-time poly-
 merase chain reaction (RT-PCR). Five genes were confirmed
 upregulated and two were downregulated. These genes are
 known to be involved in different cancer pathways. Because the
 threshold dose can be observed below the level 10~8 M, we just

 included in our analysis the 2 low doses and only 1 high dose
 (10~10 M). Thus, there were a total of 24 measurements avail-
 able for each gene (3 doses X 8 measurements).

 The data were preprocessed before analysis as described in
 Lobenhofer et al. (2004). In brief, the gridding quality of
 microarray images was checked for misalignment using the
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 gride heck function in the R/maanova package. Spots with higher
 background intensity than foreground were removed from the
 analysis. The normalization process included an intensity-lowess
 transformation and channel-mean centering of the data.
 The data were then transformed to remove the possible

 correlation between the observations belonging to the same
 biological replicate, following the principle described in Sec-
 tion 2.3. To estimate the function h in (6, 7), we proceeded as
 follows using the pooled data of the seven genes. First, we
 estimated the residuals from the quantile regression model
 specified in (1), including the dose and dye effects as explan-
 atory variables. Then, we estimated the variance-covariance
 matrix of the residuals using a linear model with a compound
 symmetry correlation structure defined as a block-diagonal
 matrix in which each block is 4 X 4 with 1 for the diagonal
 entries and λ for the off-diagonal entries.
 Each block of dimension (4 X 4) represents a biological

 replicate and we assumed the same correlation structure for
 each gene as well as the same correlation between two tech-
 nical replicates. To analyze the data, we fitted the regression
 model (1) with the dose and dye effects as covariables using
 quantile regression on the transformed response and co variâtes.
 Then, we computed a robust CI /„ of fixed length (Sections 2-
 3) for the model intercept. The initial sample size n0 was fixed
 at 1 6, which corresponds to the number of measurements at the

 two low doses. Then, we determine sequentially the number of
 groups of technical replicates at the high dose, where each
 group had two observations (duplicated spots). The exper-
 imental process stops for Ndk the smallest η > n0 is such that the
 length of In (Ln < 2 d). The results are presented in Table 1 for
 a = 0.001, the value chosen by Lobenhofer et al. (2004) to
 adjust for multiple comparisons in their study.
 For each gene, the precision parameter dk (k = 1, . . ., 4) is

 determined by the constraint on the stopping variable
 Ndk = C2k(a)W2('/2)/d2k. It is lower than 24 and can take only
 the following values 16, 18, 20, 22, or 24. The estimator
 W2('/2) denotes the kernel regression estimator of the stand-
 ard deviation of the intercept parameter.

 These results indicate the minimal number of technical

 replicates Ndk required to estimate the gene expression level
 with a fixed precision. We observe that for a relatively small
 precision parameter (dk values), the stopping value remains
 lower than 24 (the maximum number of technical replicates
 available for the 3 doses). Genes 1, 2, 3, 4, and 5 were sig-

 Table 1 . Results from group sequential discrete monitoring
 microarray experminent

 Label Name d Nd ß"'1 SD (ßf ) 99.9% CI
 Gene 1 SDF1 0.375 22 1.175 0.283 (0.976, 1.374)
 Gene 2 MYB 0.410 20 0.971 0.457 (0.578,1.364)
 Gene 3 CDC28 0.243 18 0.668 0.111 (0.582,0.755)
 Gene 4 LRP8 0.480 22 0.479 0.547 (0.094,0.864)
 Gene 5 CDC25A 0.265 18 0.081 0.042 (0.048,0.113)
 Gene 6 TMP3 0.215 18 -0.369 0.257 (-0.569,-0.169)
 Gene 7 PRKCZ 0.226 20 -0.445 0.260 (-0.669,-0.221)

 NOTE: d, precision parameter; Νώ stopping variable estimator; ß"'1, LAD intercept
 estimator; SD(ß"1'), kernel regression estimator of the standard deviation of β"'1; CI,
 99.9% confidence interval of the intercept.

 nificant upregulated differentially expressed (p < 0.001) and
 genes 6 and 7 are downregulated differentially expressed.
 These seven genes were confirmed to be differentially
 expressed by quantitative PCR. In conclusion, our analysis
 showed that the experimenter could have stopped the ex-
 periment after collecting only 22 replicates and would
 have reached the same conclusion as in Lobenhofer et al.

 (2004).

 5. SIMULATION STUDY

 To better evaluate the performance of our sequential method,
 we conducted a small simulation study. Our goal was to assess
 more specifically the sensitivity of our sequential approach to
 three factors: (1) the use of continuous versus discrete
 sequential procedures; (2) the distribution of the error term in
 the model; (3) the presence of a batch effect. The design of the
 simulation study mimicked the experimental design used in our
 application. The X and e were generated independently, where
 X follows under discrete monitoring a discrete uniform dis-
 tribution taking the values 0, 3, and 5 and under continuous
 monitoring a uniform distribution with values belonging to the
 interval (0, 5). In the discrete monitoring, each group included
 sequentially had a size of eight observations and the group was
 added at one specific dose. We also considered the possibility
 of a batch effect, the value of which changed whenever a new
 group was added (discrete monitoring) or when eight obser-
 vations were successively added (continuous monitoring). The
 data were generated from the following linear model:

 γ = βχ + ß2Dose + ß3Batch + δε

 where β' is the intercept denoting the gene expression at an
 initial dose, β2 is the slope parameter coding for the change in
 gene expression with dose effect. The terms β3 and δ corre-
 spond to the additive and multiplicative effects of the batch.
 The source of variation e is a random vector of independent and
 identically distributed errors with a distribution function, which

 is either Normal Ν (θ, σ') or Laplace L(0, σ2) . The reason for
 choosing this latter distribution is to show the robustness of the

 l) estimator in presence of long-tailed error distributions.
 The regression parameters (β', β2, and ^3) were fixed

 respectively to 1, -0.2 and 0. 1 and σ* was set to 0.3 and 0.4, as
 observed in the application. The precision parameter d was
 determined such that the theoretical stopping rule value

 nd = Ζ2_α/2σ2/ά2 was equal to 32 or 56, where σ2 denotes the
 theoretical asymptotic variance of the βχ estimator. In all
 simulations, we used vn - η~δ, with δ = 1 - 2 η = 0.42 G (1/3,
 1/2). In this situation, the conditions of the theorems giving the
 limiting behavior of the kernel estimator are satisfied. The
 Epanechnikov kernel was used but we obtained similar results
 with the Gaussian kernel. The initial sample size was fixed at n0
 = 16 in all simulations and the number of Monte-Carlo sim-

 ulations was 1 ,000. Results are presented for the normal error
 distribution in Table 2 and for Laplace error distribution in
 Table 3.

 Continuous versus Discrete Sequential Procedure With No
 Batch Effect. We obtained almost unbiased parameter esti-
 mates of the regression parameters when the procedure was
 continuous. The use of a discrete procedure does not alter the
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 parameter estimates but the standard deviation of the estimates
 is slightly larger in that case. The standard deviation of the
 intercept, estimated by the kernel procedure, is generally
 slightly underestimated compared with the theoretical value in
 both sequential procedures. The sample size required to stop
 the experiment is larger under the discrete procedure. In some
 cases, one or two additional groups (of eight observations) are
 needed to stop the experiment compared with the continuous
 procedure. The length of the CI is inversely proportional to the
 stopping rule value and, consequently, it is smaller under the
 discrete procedure. The coverage probability was very close to
 the 99.9% nominal level in the continuous procedure but was
 lower than that in the discrete procedure. This is because more
 groups are used than expected, and therefore the critical values
 used in the group sequential procedure were not optimal.

 Batch Effect. The parameter estimates (intercept and
 slope) are not altered by the presence of the batch effect and are
 still almost unbiased. The additive effect of the batch is also

 well estimated in the model. The length of the CIs is larger
 when there is a batch effect, which is expected because the
 multiplicative effect of the batch increased the variance of the
 error distribution in the regression model. The batch effect also
 affected the coverage probabilities, which are smaller than the
 nominal 99.9% level even in the continuous case. The bias in

 the coverage probabilities is larger with the discrete sequential
 procedure.

 Normal versus Laplace Error Distribution. The results are
 very similar with normal and Laplace error terms. The
 parameter estimate is not very sensitive to the distribution of
 the error term, which shows the value of a robust estimator.

 6. DISCUSSION

 Our article establishes a general theoretical framework for
 sequential approaches in microarray experiments. Our theo-
 retical developments as well as our real and simulated data
 demonstrate its advantages as compared with fixed-sample size
 approaches. More particularly, our application showed that we
 were able to replicate Lobenhofer et al. 's (2004) results and
 reach the same conclusions with fewer technical replicates.
 Sequential designs, in contrast to fixed-sample size designs,
 can achieve efficiency by making just enough measurements to
 evaluate the experimental endpoints with the desired precision.
 Numerically, we also proved that our approach is valid in finite
 samples and is robust to the choice of the error term distribution
 in the linear model. The use of discrete instead of continuous

 monitoring did not alter the parameter estimates of the model.
 However, for small sample size problems (nd < 25), as observed
 in our application, the use of discrete monitoring slightly
 increased the sample size needed to stop the experiment. Our
 sequential approach is therefore slightly liberal and some
 adjustments of the critical values are required to achieve the
 correct nominal Type I error rate.

 The major question related to this type of approach is its
 feasibility and applicability in practice. We partly answered
 this question through our application and small simulations. In
 the application, we sampled sequentially the technical repli-
 cates with two observations each. Sampling groups of bio-

 logical replicates, each with four observations, would have
 been more relevant, but was not possible because of the rela-
 tively small sample size available for the experiment. The
 initial sample size was fixed to 16 and therefore the range of
 possible stopping variables was quite limited. Despite this
 limitation, our sequential procedure was always able to con-
 verge and gave CIs that were relatively precise for this type of
 problem. The small simulations confirmed the robustness of
 our approach to outliers and departure from normality. In many

 biological experiments, especially those involving technologies
 such as microarrays, data have generally a low signal-to-noise
 ratio that makes analysis more complex and very sensitive to
 outliers. Therefore, our approach warrants more general
 application in microarray studies. Our simulations also dem-
 onstrated the accuracy of the procedure to estimating the model

 parameters and its good behavior in the presence of batch
 effects.

 Besides the statistical properties mentioned previously, it is
 important to discuss the technical feasibility and applicability
 of the method. In a recent NCIC (National Cancer Institute of
 Canada) project, we planned to apply a novel microarray
 experimental design where four batches of eight microarrays
 will be sequentially realized with the aim to study tumor pro-
 gression in prostate cancer patients. The first two batches allow
 one to perform a first screen of methylation profiles and draw
 hypotheses regarding the role of several genetic pathways.
 Each batch corresponds to a particular stage, so the next
 batches will make precise the role of these pathways in tumor
 progression. In our simulations, we introduced a method that
 took direct account of batch effects. Alternatively, one could
 adjust the data before analysis at the preprocessing step of the
 experiment (Johnson, Li, and Rabinovic 2007). Because most
 array technologies are based on comparative hybridization, one
 can use the control sample for the adjustment. Therefore, we
 think batch effects are not a major problem to deal with, when
 present in the experiment.

 At this stage of development, our approach can also be
 applied to find individual genes differentially expressed across
 several experimental conditions (treatment versus control,
 different doses, or time-points) and rank them according to
 their importance for the given class comparison problem. For
 example, a classical ζ test can be performed on the intercept
 and can serve as a criterion to rank the most important genes in

 the microarray experiment. We also plan an extension of this
 method to the joint analysis of multiple genes that could be
 differentially expressed in a coordinated manner. For example,
 the work from Gibbons et al. (2005) can be easily adapted to
 our method. We are also planning to integrate the correlation
 structure directly in the analysis rather than adjusting for it to

 gain some efficiency.
 Altogether, we anticipate that this approach could have a

 significant contribution to microarray data analysis by
 improving the usual experimental designs and methods of
 analysis.

 APPENDIX: PROOFS

 Before demonstrating the proof of Theorem 2, we provide
 some auxiliary results on the asymptotic normality of Nd. We
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 now study the asymptotic behavior of the stopping rule Nd. We
 assume that vn - η2ιη~ι for some η G (1/4, 1/3).

 Lemma A.I. Let η G (1/4, 1/3) and vn be such that vn -
 n2v~l. Under regularity conditions, we have as d - > 0+:

 (1)

 N](wNd(l/2)-a) -^-^(Ο,σ2*), (A.I)

 (2)

 Ν](ψΝ^('/2)-σ) ^ΛΑ(0,σ2Ζ), (Α.2)

 (3) for all ε' > 0:

 Proof of Lemma A.I. (1) By (4) we obtain

 ^,(ψη('/2)-σ)-^->λί(0,σ2Κ). (Α.4)
 Taking vn = n2v~' we have

 ^^(^<ι/2»-σ) = (^^)'
 (ï^)>,,(1/2)_ff).

 (A.5)

 By the third result of Theorem 1 we have, as d - > 0+,

 &-'
 dl7]

 and by (A.4), as d - > 0+,

 ρ{^(ίνπ(1/2)-σ) -^}^Φ(^)' ν^ΕΜ' (Α·7)
 where Φ denotes the cumulative distribution function of the

 standard normal distribution. In addition to (A.6) and (A.7), the
 theorem of Anscombe (1952) allows us to conclude that, Vy G R,

 as d - > 0+.

 Therefore, as d - > 0+, we have

 °^^Il(wNÁll2)-a) -^Af(0,Ka2). (A.8)
 Using (A.6), (A.8), and Slutsky's Theorem on (A.5), we obtain

 Ν](ψΝιΙ('/2)-σ)-^Μ(0,σ2Κ) asd^0+,

 (2) Relation (A. 2) is derived in the same way.
 (3) We now prove (A. 3). For χ > 1, we have 0 < y/x-
 yfx~^' < 1/(2 v^^T). We thus have, for all E' > 0,

 ρ| I /v^-^tw V y/Κσ J >e,i ) I V y/Κσ J Zl-a/2 )

 ' 2νΚΖΐ-α/2σ j
 Moreover, as d - > 0+, we have

 d(Nd-iy^ NTm
 VKz'-a/2^2 2y/n^VK

 Consequently, by Theorem 1 (3), we have as d - > 0+,

 Proof of Theorem 2. One one hand, as Ν d = min{/î > «o

 Wn(l/2) < ^}, with J > 0, we have

 ^.(1/2) . >^,
 ^1-α/2

 and, therefore as d - > 0+,

 <limsup/»|^(w^(l/2)-ff) ^t- <y|.
 By Lemma A.I (1), we have as d - > 0+,

 limsuppí^f^^-σ^ -i- < y 1 < 4>(y). (A.9)
 I 'Zl-a/2 / VKa J

 On the other hand, according to the definition of the stopping
 rule Nd, we have

 Z'-a/2

 and therefore, as d - > 0+,

 liminfp(^(w^_,(l/2) -σ) -^- < yl

 ..iminfP^^^-.)^-^}.
 Using Lemma A.I (2) and Lemma A.I (3), we obtain, as

 liminfp/^f^^-^ -i- < jl ^ Φ(>;). (Α.10)
 Ι 'Ζι-α/2 / VKa J

 Therefore, by (A.9) and (A. 10), we have VjGl

 I 'Zl-a/2 / VKa )

 Since J yjN~d

 [Received October 2006. Revised December 2008.]
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